Experiment med C-vitamin, matsoda urinvägsinfektion och gikt

09/10/2015

Nobelpristagaren Linus Pauling (1901 – 1994) såg C-vitamin som ett extremt viktigt ämne vid behandling av flera olika sjukdomar. Pauling som var kemist, inte läkare, använde stora doser vitamin C från 4 – 18g per dag för att behandla bl.a. hjärtsjukdomar (åderförkalkning). Paulings dos ligger på kanske 40 – 50 ggr den dagliga dosen rekommenderad av skolmedicinen (75 mg/dag).

220px-L_Pauling

Nobelpristagaren, kemisten, Linus Pauling. Pauling ansåg att stora doser C-vitamin var nyttigt mot diverse åkommor. Bilden är från Wikipedia.

Linus Paulings tankar var inte okontroversiella. Extremt stora doser C-vitamin kan ge problem i form av t.ex. njursten. Allmänt gäller dock att C-vitamin eftersom det är vattenlösligt kommer att spolas ut med urinen utan att ge symptom, mera om detta nedan.

Jag har under senare år två gånger råkat ut för urinvägsinfektion som sköttes konventionellt med antibiotika. Då jag för en tid sedan började känna av symptom ville jag inte i onödan gå igenom en antibiotikakur igen och beslöt att försöka åtgärda problemet på ett alternativt sätt. Tanken var att avsiktligt sänka pH betydligt i urinen genom att ta relativt stora doser C-vitamin. Doser på ca. 2g under ett par dagars tid eliminerade symptomen och mätning av pH visade att urinens pH låg på ca. 5,6 d.v.s. relativt surt. Jag beslöt att fortsätta med de höga C-vitamindoserna en tid för att stabilisera det ursprungliga problemet och för att helt enkelt se vad som skulle hända.

För några dagar sedan blev det plötsligt kallt med temperaturer kring noll grader och jag började använda handskar för att inte frysa om händerna. Jag gillar att äta olika typer av österländsk mat samt också rätt mycket ägg och bacon. Igår gick jag ut med hunden och passade på att kolla en del saker på nätet under promenaden på mobiltelefonen. Jag hade telefonen i höger hand utan handske och hundens koppel i vänster hand med hanske. Resultatet blev:

Någon timme senare började jag ha tydligt ont i den andra leden på högra handens tumme. Smärtan var först obestämd och senare mot kvällen kändes det som om man med tummen i vissa lägen hade stuckit en stoppnål genom ifrågavarande led … inte alls trevligt.

Vad hade hänt? Min tolkning av situationen är att de stora doserna C-vitamin hade påverkat pH ute i vävnaderna så att det fanns en relativt hög koncentration fri urinsyra ute i vävnaderna. Då högra handen kyldes ner så kristalliserades urinsyra i det kalla området och det råkade sig så att den värst drabbade leden råkade vara tummens andra led från tumspetsen.

Min persdonliga diagnos utgående från kännedom om vad jag ätit, kyla och de stora C-vitamindoserna, inte verifierad av läkare, är att symptomen pekade på gikt d.v.s. utfällning av urinsyra som skapar vassa kristaller i leden. Lösningen borde då logiskt vara att minska på syraöverskottet och på detta sätt lösa upp kristallerna vilket bör eliminera problemet.

Jag stoppade C-vitaminintaget och drack ett glas vatten med en halv tesked matsoda. Efter ett par timmar försvann symptomen nästan helt. Ett andra glas på morgonen har eliminerat symptomen helt.

Konklusion

Stora doser C-vitamin kräver att man balanserar syran med lämplig kost. Dessutom kan eventuellt matsoda behövas för att balansera upp pH till en lämplig nivå. Notera att Pauling använde matsoda för att balansera stora C-vitamindoser, tanken är alltså inte min.

Risker

Det finns vissa indikationer på att rökare som intar stora doser C-vitamin kan ha en förhöjd risk för cancer. Min uppfattning är att alla faktorer som sänker kroppens pH kan vara riskabla på längre sikt. Jag tänker på nobelpristagaren i medicin Otto Warburg som konstaterade att man genom att försvåra cellers syreomsättning (andning) kan göra vilken cell som helst till en cancercell. Syreomsättningen är en funktion av blodets pH och detta är en orsak till att blodets ph hålls konstant inom snäva gränser. Om pH stiger för högt … eller sjunker för lågt så dör man! Det är naturligt att kroppen då har flera inbyggda säkerhetssystem för att kroppen skall överleva.

180px-Otto_Warburg

Otto Warburg nobelpristagare i medicin på 1930-talet. Påstod att vilken cell som helst kan göras till en cancercell genom att försvåra cellens syreomsättning. Bilden är från Wikipedia.

Då blodets pH sjunker alltför lågt så hanterar kroppen saken genom att göra sig av med koldioxid vilket höjer pH genom att koldioxid försvinner och det blir kvar alkalisk ”aska” av organiskt material som bryts ned. Om pH stiger för högt så utsöndrar kroppen alkaliska ämnen via njurarna. Då man läser vissa läkares kritik av pH-kontroll så verkar argumentet vara att eftersom blodets pH hålls justerat inom snäva gränser så kan inte pH vara något problem d.v.s. hela kroppen hålls inom samma snäva pH-gränser. Min uppfattning är att argumentet är extremt svagt. Lokalt kan pH ligga på helt andra nivåer än i blodet. Man behöver endast tänka på matsmätningen där extremt låga pH nivåer förekommer. Likaså kan man tänka på benstommen som i princip kan uppfattas som en alkalisk reserv.

Vad händer då pH lokalt blir alltför lågt eller alternativt då syresättningen av celler blir otillräcklig till följd av t.ex. hård fysisk aktivitet? En cell som får allför lite syre kan gå över till en nödmetabolism där socker, i stället för att tillsammans med syre brytas ned till vatten och koldioxid, förvandlas till mjölksyra men via en ineffektiv process som ger ut endast 1/16 and den energimängd man skulle ha fått med syre. Mjölksyran sänker pH ytterligare vilket inte är bra för cellens syresättning.

En cell som har kommit in i mjölksyremoden kan börja aktivera gamla gener från tiden då cellen var en encellig organism vilket leder till att den börjar dela sig okontrollerat … vilket kan ge cancer. Varje gång en cell går över i mjölksyremoden så utgör detta en risk och ju längre perioder celler använder sig av mjölksyremetabolism desto större är risken för regression (”mutation”) som kan synas som cancer. Det är i detta sammanhang intressant att se hur vanlig cancer är hos idrottare i uthållighetssporter såsom ishockeyspelare. Är orsaken helt enkelt den att dessa personer tvingar delar av kroppen att använda mjölksyremetabolism under relativt långa perioder vilket ökar risken för att något går snett. Risken ökar eventuellt till följd av att dessa idrottare konsumerar mycket sädesprodukter för att få snabb energi.

Spekulationer

Vad händer om man under lång tid t.ex. äter mat som tenderar att sänka blodets/kroppens pH? Eftersom blodets pH borde ligga någonstans mellan 7,35 och 7,45 för att andningen skall fungera så kommer kroppen:

  1. Att använda andningen och koldioxidomsättningen tillsammans med njurarna för att reglera blodets pH.
  2. Om (1) inte är tillräckligt och pH sjunker så måste det finnas nödlösningar där kroppen t.ex. börjar ta buffertämnen ur olika organ för att blodets pH skall kunna hållas på en tillräckligt hög nivå. På sikt kan stöld av buffertämnen leda till skador på olika organ men detta spelar ingen roll om döden annars skulle komma mycket snabbt.
  3. Organ från vilka alkaliska buffertämnen tas bör få lägre pH vilket leder till sämre syreomsättning. Resultatet bör vara att vissa celler eventuellt tvingas in i nödmod (mjölksyra) vilket ökar risken för cancer. Varifrån buffertämnen stjäls är antagligen delvis en fysiologisk slumt vilket förklarar varför cancer i såfall uppstår på olika håll i kroppen och inte varje gång i samma organ.

En naturlig åtgärd för att underlätta arbetet för kroppen vore då att modifiera kosten så att den producerar mera alkalisk aska vilket på sikt löser problemet. Alternativt kan t.ex. matsoda i vatten användas.

Tagelharpa/Jouhikko/Hiiu kannel

02/08/2015

En vän gav för en vecka sedan boken ”The Bowed Lyre Jouhikki” till låns då vi hade vår vanliga fredagsspelning på Arbetets Vänner i Helsingfors. Boken behandlar stråkharpor i olika varianter från Estland, Finland och Sverige. Boken gav mig inspiration att återkomma till tagelharpan (det här blev nummer två). Det instrument den här artikeln beskriver är att betrakta som en ren prototyp där jag främst har varit ute efter att få dimensionerna ungefär rätt så att instrumentet blir spelbart. Jag bygger sannolikt ett instrument till inom den närmaste framtiden eftersom jag naturligtvis har insett att byggmetoden kan förbättras avsevärt.

Genom att t.ex. göra kroppen något tunnare blir det mycket lättare att såga ut uppningen för vänster hand maskinellt med lövsåg … i det föreliggande exemplaret är stommen några millimeter för tjock för att man skulle kunna vrida stommen fritt vid sågningen. Resultatet var att sågningen måste göras små bitar i taget och den sågade ytan blev relativt ojämn vilket gav mera arbete vid slipning/putsning.

IMGP6140_PEF_embedded

Fig. 1 Utgångspunkten var grovt byggnadsvirke 50 x 150 mm. På bilden har materialet grovhyvlats.

Talharpan jag valde att bygga är av finsk modell med tre strängar. Eftersom det inte finns någon standardiserad form för en talharpa d.v.s. inga standardritningar existerar på nätet så började jag arbetet med att utgående från nogra bilder på existerande talharpor skissa upp en egen modell.

IMGP6137_PEF_embedded

Fig. 2 En grov skiss av det blivande instrumentet. Dimensionerna bestämdes av bredden på materialet jag hade tillgång till samt av önskemålet att mensuren skulle vara ungefär 330 mm.

Skissens form överfördes till stombiten och ytterkonturen sågades ut i bandsåg. Det här var ett misstag. Jag borde ha fräst limytorna för locket innan sågningen … mycket arbete skulle ha sparats. Locket är nedsänkt ca 4 mm i stommen.

Halsen sågades ut i bandsåg. Den största sågtjockleken är mycket nära 150 mm … men det fungerade. Mitt bandsågsbett kunde ha varit något smalare vilket skulle ha underlättat den ganska kraftiga kurvan sedd från sidan i fig. 2.

Den inre delen av klanglådan sågades nu ut med bandsåg. Jag sågade mig in i stommen från ändträt och limmade ihop snittet med varmt snickarlim efter sågningen utan någon putsning av sågytan. Snittet är nästan osynligt. Sargerna kunde ha sågats något tunnare … nästa gång.

Följande skede var att såga ut öppningen för vänster hand. Denna sågning skedde med motorlövsåg. Sågningen skulle ha förenklats väldigt mycket om stommen skulle ha varit 3 – 5 mm lägre (plattare). Stommen skulle då rymmas under sågens arm vilket hade sparat rätt mycket tid vid sågningen. Sågningen gick att göra men den var besvärlig.

Lock och botten gjordes i al eftersom jag råkar ha några lämpliga plankor liggande. Det bästa materialet skulle ha varit kvistfri gran men jag hade inte lämpligt material liggande som kunde offras för ett prototypsinstrument. Många olika trädslag har använts för talharpor vilket betyder att det här instrumentet fortfarande kan anses vara autentiskt. Plattorna gjordes av 100 x 20 mm alplank som i bandsåg klövs till två bitar vardera ca. 10 mm tjocka. Bitarna hyvlades därefter i en tjocklekshyvel till 4,5 respektive 6 mm tjocklek varefter bitarna limmades ihop till 200 mm breda plattor. Då limmet hade torkat kördes plattorna ännu några varv genom hyveln för att de skulle vara jämntjocka och limforgarna rena.

IMGP6216_PEF_embedded

Fig. 3 Limning av lock/botten. Materialet är al. Plattorna är gjorda så att en alplanka 100×22 mm klyvs på längden. Därefter hyvlas delarna till ungefär korrekt tjovklek varefter de limmas ihop med varmlim (traditionellt snickarlim).

 

IMGP6134_PEF_embedded

Fig. 4 Locket limmas på den grovformade stommen.

Stämskruvarna gjordes av en. Jag lade för flera år sedan undan några bitar en med en diameter på ungefär 30 mm. De här bitarna kom nu till användning. Stämskruvarna svarvades ur detta material.

IMGP6144_PEF_embedded

Fig. 5 Stämskruvarna är svarvade av En från från det egna området. Instrumentet har en liten basbjälke även om detta inte är traditionellt. Basbjälken är gjord av gran.

IMGP6146_PEF_embedded

Fig. 6 Bottenplattan limmas på.

Efter att lock och botten limmats på skars kanterna jämna med kniv varefter kroppen formades till sin slutliga form med kniv.

Stall och stränghållare gjordes av ek eftersom jag råkade ha en lämplig bit liggande. Lönn skulle ha varit ett för musikinstrument merra traditionellt material men ek har väldigt likartade mekaniska egenskaper. Bitarna sågades ut med lövsåg varefter de skars till önskad form med kniv.

IMGP6206_PEF_embedded

Fig. 7 Instrumentet i spelbart skick en vecka efter den första titten i boken 🙂 . Tagelharpan/Jouhikon har färgats med bränt socker varefter den har fått några lager spritlack (Shellack). Tanken är att lägga på ytterligare två till tre tunna lager oljelack för att ge djup åt ytan.

Jag har färgat in några fioler med bränt socker eller egentligen mörk sirap som kokats in i kastrull så att sockret blir nästan svart. Då sockret har bränts tillräckligt blir den torkade sockerytan inte klibbig. Eftersom färgen består av förkolnade kolhydrater kan man anta att den är relativt beständig … tänk tjära. Instrumentet lackades några varv med spritlack … eftersom spritlack torkar snabbt och jag ville ha instrumentet med till Altra Volta. Planen är att lacka instrumentet några varv med oljelack senare. Oljelack fungerar bra på shellackgrund.

Strängar

Strängar till en tagelharpa görs av tagel.  Anders gjorde tre strängar med 20, 40 och 60 tagel. Då strängarna stämdes visade det sig att tagelmängderna var något för stora för mitt instrument. Lämpliga tagelmängder skulle antagligen vara 16, 35 och 50. Det är naturligtvis möjligt att kvaliteten på de begagnade taglen inte var speciellt bra. Strängtillverkningen blir ett intressant framtida projekt.

Tillverkning av strängar till en tagelharpa.

Stråkharpa, exempel på musik

Cupola + stråkharpa.

Traditionell finsk folksång + stråkharpa (Jouhiorkesteri)

Pekko Käppi & Jouhiorkesteri

Sofia Joons sjunger och spelar stråkharpa.

Finsk musik på stråkharpa/jouhikko.

Ice melts when it is warm … or how did it go?

27/06/2015

In 1975 the National Academy of Sciences published the picture below that showed the temperature of the northern hemisphere. The picture shows roughly one degree of warming from 1885 to 1940 and also that essentially all warming had disappeared by 1970.

Temp_1880-1970_National_Academo_of_Sciences

The temperature of the Northern hemisphere by the National Academy of Sciences 1975.

We know it was really cold in the Nordic countries 1860 – 1870 why? This is because we know that up to 20% of the population of areas in Sweden and Finland died in famine because crops failed for several years in a row. From Sweden it is reported:

The 1860-ies was a decade when crops failed in Norrland several times. The spring 1867 was extremely cold and the summer was late. There are many reports about how the winter didn’t want to loose its grip:

On may 22 at 11:30 am it was 1 deg C cold (-1) with the wind from NE. The markers on the lake (on the ice) are still standing upright and the depth of the snow is 1 1/2 aln (roughly 85 – 90 cm). May 25: Cold wind no melting and perfectly possible to move by sled, depth of snow 1 1/4 aln. On may 24 we run on ice frozen to land and no marker had melted off. On june 1: Run on the ice in a sled, good driving. On june 17 the lake was free of ice and in the evening a strong storm arose with lots of rain. June 19: Let out the cows. Snow still in the woods, no leafs on trees, no leafs on blueberry bushes no grass. (Noted by Zakarias Wallmark in Burträsk)

The harbour in Sundsvall in the 1870-ies: Neither sailing ships or steamers were able to negotiate the ice. Not until midsummer 1867 it was possible to sow in the area of Burträsk (where Zakarias Wallmark lived) och the situation was similar in other parts of Norrland.

The temperature curve above shows that still in the middle of the 1880-ies was very cold on the northern hemisphere. The Temperature now started to rise and in the beginning of 1920-ies it was possible to read essentially the same as we read in the news papers today:

Northpole_melting 1923

There are reports that the polar ice is melting and speculations that the ice could vanish altogether. Glaciers are melting fast.

After the temperature peak in 1940 the temperature started to go down again and in the early 1970-ies the whole warming from the beginning of the century had disappeared. The news papers now wrote about the cold and the risk of a new ice age.

NY_Times_1970_ice_age

At the end of the 1970-ies the cooling stopped and the new warming become a part of the politics. Note by the way that meteorologists say that a period of at least 30 years is needed  to draw any valid conclusions regarding climate. The period cooling from the 1940-ies to 1970 is thus an indication of a possible shift from a warming climate to a cooling climate (20 – 30 years). Only ten years after the cooling ended the marketing of a warming catastrophe was started.

Why the establishment suddenly did a 180 degree turn is easy to see by reading for example what the club of Rome was discussing. In the first part of the 1970-ies the worrying population growth  was discussed based on ideas of Malthus. After WWII much psychological research had been done regarding controlling the behaviour of mobs (large groups of people) had been done. The club of Rome had, after thorough internal negotiations,  found that ”weather”, o how British, could be used as a tool for influencing the population of the west.

At the end of the 1980-ies Gro Harlem Bruntland presented the idea of ”sustainable development” and roughly at the same time James Hansen of GISS presented the risk of global warming only ten years after the cooling scare ended by intentionally selecting the statistically hottest day of the summer. Before his thesis was presented to decision makers the air conditioning was shut down to allow the politicians to really feel the heat …

The climate establishment is controlled by the WMO (World Meteorological Institute) under UN (United Nations) and most national meteorological organizations are close coupled to the WMO. A small group of people within the WMO and other top organizations in the hierarchy have been able to control who is allowed to publish and also what is allowed to be published. I recommend the interested reader to Google ”Climate Gate” in different permutations to look at e-mails from the inner circle among other things talking about eliminating the warm period of the 1930-ies … a few years later the warm period had disappeared through corrections. The same set of leaked e-mails also showed how the clique conspired to force editors in important scientific magazines not willing to follow orders to resign … this was also successful in some cases.

As briefly mentioned above the e-post messages shows how the ”task group” discussed how to eliminate the high temperatures in the 1930-ies.  The marketing of the warming couldn’t be effective if it was possible to show that only half a century ago the temperatures were as high as today. The solution was to start correcting the measurements. The corrections were made by making old temperatures colder because changing today’s temperatures upwards wasn’t feasible … too easy to see through. The corrections were done as a series of corrections over a number of years. The adjustments have now almost eliminated the warm period of the 1930-ies just what the leaked mail discussed … an interesting random chance? Are the previous adjustments really done so incompetently that new adjustments that always cool the past are needed annually or semiannually.

GISS_corrections_since_1999

An example of GISS adjustments to temperatures. In this case it is US temperatures since the latter part of the nineteenth century (1880 – 2000).

Notice how the temperature adjustments are 0.5 – 0.6 deg C which is a significant part of the total global warming since the 1880-ies. How was  the correction curve created? Very easy: The original raw data is available on the net. What is needed is simply a subtraction of the raw data from the the GISS temperature estimate. The difference is the magnitude of GISS adjustments. Any reader can check this fairly easily if he/she wants to do the effort. It could also be an interesting effort for anybody to check for example the mean temperature of one year as read from a meteorological year book in one’s own country and compare this data point against the same year as presented by GISS (you find nice web sites where GISS presents its temperature estimates). Not all stations are adjusted yet. I have personally annually checked two stations Sodankylä and Helsinki in Finland but so far there hasn’t been any major changes.

Reykjavik_before_adjustments

The temperature as measured by the Islandic Meteorological institute. According to the local Meteorologists all necessary adjustments have been applied.

The picture above clearly shows the warm period in the 1930-ies followed by a very deep cooling to roughly 1980.

Reykjavik_after_adjustments

The same meteorologic station (Reykjavik) after being massacred by GISS.

Notice how the warm period of the 1930-ies has disappeared almost completely. The Meteorological institute of Island notes:“The GHCN ”corrections” are grossly in error in the case of Reykjavik”.

The same kind of ”adjustments” can today be found all over the world. The same kind of adjustments have been done in Australia where the matter has been brought to justice … so far without results. No valid explanations for the adjustments have been given.

What have these ”Orwellian corrections” brought? One result is of course that official global temperature estimates show a steeply rising temperature curve that closely follows the meme of CO2/temperature. One funny thing few will notice is that the result of the corrections is a number of funny conflicts. The heading of this article is ”Ice melts when it is warm … or how did it go?”.  When we today compare historic reports about melting/high temperatures and cooling/freezing we will notice funny conflicts.

In the first half of the 1920-ies one could read that glaciers and the polar ice were melting fast.

In the beginning of the 1970-ies one could read that the polar ice was advancing and glaciers were starting to advance again.

GISS_global_temp_meteorological_stations

Global temperature according to GISS per june 27 2015. Compare how ”corrections have changed to form of the curve completely.

The original estimate by the National Academy of Sciences in 1975 was:

Temp_1880-1970_National_Academo_of_Sciences

Notice how adjustments almost completely erased the warm period in the 1930-ies just as requested.

How does this work logically? According to GISS , read the curve, the temperatures in the 1970-ies were higher than in the 1920-ies. We know based on news reports from the 1920-ies that there was a fast melting up til perhaps 1950. After this melting period the ice was growing again.

The corrected temperature estimates of GISS thus says according to their own curve:

Glaciers and the polar ice will melt when the global temperature is low and the melting will stop when the temperature is high.

According to GISS the global temperature in the 1920-ies was ca. 0.3 deg C lower when ice was melting fast than in the 1970-ies when it according to GISS was warm and polar ices and glaciers were advancing.

Unfortunately I don’t buy this. Either the historical reports from the 1920 – 1950 are wrong or GISS corrections are wrong. I tend to believe the historical reports especially as the raw data doesn’t show this funny conflict.

Ordinary ”peasant’s logic” tells us that ice melts when it is warm and freezes when it is cold. On the other hand I know that we live in an interesting time … perhaps George Orwell was correct!

Is smälter då det är varmt … eller?

06/06/2015

Notera!
Artikeln har uppdaterats den 28.6.2015. En kurva över den globala temperaturen efter GHCN/GISS korrektioner hade fallit bort vilket kunde ha gjort artikeln onödigt svår att förstå.

År 1975publicerade den Nationella vetenskapsakademin i USA nedanstående bild som visar temperaturen på det norra halklotet. Bilden visar ungefär en 1 grad C uppvärmning från 1885 till 1940 och också att hela uppvärmningen från 1900 till 1940 hade försvunnit ungefär år 1970.

Temp_1880-1970_National_Academo_of_Sciences

Temperaturen på norra halvklotet 1880 – 1970 presenterad av amerikanska National Academy of Sciences år 1975.

Vi vet att det var verkligt kallt i Norden på 1860 – 1870-talet eftersom upp till tjugo procent av befolkningen dog på vissa områden i svält. Från Sverige rapporteras:

1860-talet var ett årtionde då missväxten drabbade Norrland upprepade gånger. 1867 var våren extremt kall och sommaren dröjde. Många vittnesmål finns om hur vintern vägrade släppa greppet:

den 22 maj kl 11.30 på dagen var det 1 grad kallt med vinden från nordost. Stockbuskarna stå ännu stångraka på träsket och snödjupet är 1 1/2 aln.den 25 maj: Kall blåst och aldrig töat, alldeles fullt snöföre, snödjup 1 1/4 aln. Den 24 maj körde vi på landfast is och ingen stickbuske var löstinad.den 1 juni: Kört isen med gott slädföre.den 17 juni blev träsket rent från is och på aftonen blev det stark storm och mycket regn.den 19 juni: Släppt ut korna. Snö i skogen, icke löv, icke blåbärsblad och intet gräs.
Anteckningar ur väggalmanackor funna hos Burträskbon Zakarias Wallmark[1]
Sundsvalls hamn på 1870-talet. Varken segelfartyg eller ångare kunde ta sig igenom is.

Först vid midsommar 1867 kunde man så i Burträsktrakten, och liknande förhållanden rådde på många håll i Norrland.

Bilden ovan visar att det ännu i mitten av 1880-talet var mycket kallt på norra halvklotet. Temperaturen började nu stiga och i början av 1920-talet kunde man i tidningarna läsa i princip samma sak vi har kunnat läsa i vår tid:

Northpole_melting 1923

Redan 1923 undrade man över om nordpolsisarna kommer att smälta bort helt.

Efter 1940 började temperaturen på nytt att sjunka och i början av 1970-talet hade hela uppvärmningen från början av 1900-talet fram till 1940 försvunnit. Tidningarna debatterade nu kylan och risken för en kommande istid.

NY_Times_1970_ice_age

Norra halvklotet är extremt kallt. Klippet är från NY Times 1970.

I slutet av 1970-talet hade avkylningen stoppat och den nya uppvärmningen hade blivit en del av politiken. Notera att man inom meteorologin anser att det behövs en trettioårsperiod av uppvärmning/avkylning för att man skall kunna tala om klimatförändring. Endast tio år efter att den 20-åriga avkylningen hada tagit slut så började marknadsföringen av en kommande värmekatastrof. Varför man vände kappan kan man antagligen förstå då man ser vad ”etablissemanget” bl.a. Romklubben höll på med. Man hade i början av 1970-talet diskuterat den katastrofala folkökningen och utgående från Matlthus idéer den kommande befolkningskatastrofen. Efter det andra världskriget hade man forskat mycket i hur man kan styra människomassor. Romklubben hade efter interna överläggningar kommit fram till att ”vädret”, ack så brittiskt, eventuellt kunde vara den hävstång som kunde användas till att påverka västerlandets befolkning.

I slutet av 1980-talet lanserade Gro Harlem Bruntland den ”hållbara utvecklingen” och ungefär samtidigt presenterade James Hansen den globala uppvärmningen som ett extremt hot genom att på sommaren stänga av luftkonditioneringen i det rum där teserna skulle presenteras … åhörarna kunde alltså känna värmen i sitt eget skinn…

Klimatetablissemanget kontrolleras via WMO (World Meteorological Organization) onder FN och de flesta nationella meteorologiska organisationer är kopplade till WMO. En liten klick på en handfull personer inom WMO, NASA och andra centrala organisationer har rätt väl kunnat kontrollera vem som fått publicera inom det meteorologiska området och också vad som får publiceras. Epostmeddelandena från ”klimategate” d.v.s. interna meddelanden från den inre ringen visar hur man bl.a. konspirerade för att ge sparken år obekväma redaktörer på centrala vetenskapliga tidskrifter. Historien visar att man i vissa fall lyckades …

E-postmeddelandena visar också hur man för ca. 15 år sedan diskuterade hur den obekväma värmetoppen på 1930-talets slut skulle elimineras. Marknadsföringen av den katastrofala uppvärmningen kunde inte vara övertygande om man samtidigt kunde peka på en period i närhistorien då temperaturerna var lika höga som idag. Man beslöt tydligen att eliminera problemet genom att ”justera” mätta temperaturer. Justeringen gjordes så att äldre mätningar gjordes kallare eftersom höjning av dagens temperaturer skulle vara alltför enkel att genomskåda genom att själv följa med temperaturen. Justeringarna har genomförts i en serie uppskattningar av jordens temperatur där de tidigare mätta temperaturerna efter varje justeringsgeneration har blivit kallare. Justeringarna har med åren nästan helt eliminerat 1930-talets värmeperiod, precis det de läckta ”klimate gate” epostmeddelandena efterlyste … intressant slump?

GISS_corrections_since_1999

Korrektioner till temperaturen i USA sedan 1999. Notera hur korrektionerna kring 1940-minskar den obekväma temperaturtoppen i slutet av 1930-talet.

Kurvan visar alltså den officiella temperaturen minus mätta rådata.

Samma korrektioner genomförs på många ställen i världen trots protester. Temperaturen i Reykjavik som den har blivit mätt av Islands meteorologiska institut visas i följande bild.

Reykjavik_before_adjustments

De Isländska meteorologerna har mätt följande temperatur för Reykjavik. Mätningarna innehåller relevanta korrektioner för plats och använda termometrar.

Amerikanska GISS (Goddard Institute of Space Science [NASA]) korrigerar mätningarna på följande sätt:

Reykjavik_after_adjustments

Temperaturen i Reykjavik efter GISS justeringar. De Isländska meteorologerna protesterar men utan resultat.

Notera hur värmeperioden kring 1940 då temperaturerna var lika höga som idag har eliminerats. Det Meteorologiska institutet på island konstaterar: “The GHCN ”corrections” are grossly in error in the case of Reykjavik”. (GHCN korrektionerna gällande Reykjavik är grovt felaktiga).

Samma typ av justeringar hittas på allt fler ställen i hela världen. Exakt motsvarande justeringar har gjorts i t.ex. Australien där saken har förts till domstol och de lokala myndigheterna har ålaggts att korrigera felaktigheterna … dock utan resultat.

Vad har de här Orwellska ”korrigeringarna” lett till?  Ett tydligt resultat är naturligtvis att vi ser en kontinuerligt stigande temperaturkurva som följer det fastslagna manuset att en katastrofal uppvärmning är på gång. Det man inte påminns om är att justeringarna leder till rätt intressanta motsägelser. Rubriken på den här artikeln är ”Is smälter då det är varmt … eller?”. Då vi jämför historiska rapporter om smältning/värme och tillfrysning/kyla inom polarområdet så dyker det upp roande konflikter.

Vi repeterar Nationella Vetenskapsakademins kurva från 1975:
Temp_1880-1970_National_Academo_of_Sciences

Och jämför ovanstående med GHCN/GISS korrigerade kurva som i politiska sammanhang anses vara sanning:
GISS_global_temp_meteorological_stations

I början av 1920-talet kunde man i tidningarna läsa om hur glaciärer smälter i snabb takt.

I början av 1970-talet kunde man läsa om hur isarna i norr lade sig på nytt och glaciärernas smältning hade stoppats.

Hur fungerar det här logiskt. Enligt de moderna korrigerade temperaturuppskattningarna var temperaturen på 1970-talet högre än i början av 1920-talet (jämför GISS korrigerade kurva ”Global Temperature meteorological stations”). Vi vet enligt nyhetsrapporter att vi hade en kraftig avsmältning från 1920 fram till en bit in på 1940-talet varefter isarna igen började breda ut sig. De korrigerade temperaturuppskattningarna säger alltså:

Glaciärer och is smälter då det är kallt och smältningen upphör då det är varmt.

Beklagligtvis köper jag inte det här. Antingen är alla dokumenterbara rapporter om värmeperioden 1920 – 1940 felaktiga eller så är dagens klimatkorrektioner grovt felaktiga.

Normalt bondförnuft säger att is smälter då det är varmt och vatten fryser då det är kallt … men det kan naturligtvis hända att George Orwell hade rätt!

Fantasier i realtid

11/05/2015

Jag har igen gjort en serie modifikationer på min Hardangerfiol. Jag har uppfattat att fiolens låga register har blivit rätt torrt eventuellt till följd av att lacket med åren hårdnar eller att träet långsamt oxiderar. Jag har försiktigt slipat lock och botten på insidan för att ge instrumentet lite mera must/djup. En justering är dock alltid en balansgång. Jag gillar mitt instrument och jag vill inte modifiera det så att det blir ett helt annat instrument eller så att den ljusa klangen i instrumentet försvinner.

P1040108

Min Kinesiskbyggda hardangerfiol.

 

fiol_botten

Slipning av området A gör tonen rundare/mörkare. Det är skäl att slipa extremt försiktigt här. Jag slipade denna gång området A ungefär 20 drag på insidan. Området B gör tonen ljusare. I allmänhet är man tvungen att slipa både A och B flera gånger för att hitta den balans i tonen man vill ha. Slipning av området C i bottenplattan ger en effekt som påminner om slipning i området B. Området E i bottenplattan påminner om området A i locket men effekten är mycket svagare.

Jag deltog i en sång/musikkväll i ”Fredsstationen” i Böle i Helsingfors torsdagen den 7.5.2015. Publiken bestod av främst ungdomar i åldern 15 – 30 år. Då jag blev uppmanad att spela/sjunga efter ett antal stycken tydligt inspirerade av Sufimusik beslöt jag att spela en improviserad ”meditation” på den modifierade Hardangerfiolen. Nedanstående ljudexempel är återskapad ur minnet vilket betyder att tonarten är densamma och den allmänna känslan bör bara rätt lika … men liksom all improviserad musik är det fråga om någonting som skapas i stundens ingivelse och sedan försvinner i intet. Stycket har ingen egentlig rytm och längden är rätt exakt 5 minuter. Stycket får spelas/reproduceras fritt utan ersättning. Källan får gärna anges men det är inget krav.

Inledande justering av Sockerfiol #2

31/03/2015

Sockefiol nummer 2 är lackad och börjar så småningom vara i spelbart skick. Jag har avtalat med min vän Zoltan Takacs som är toppviolinist vid den finska radioorkestern att vi gör den akustiska stämningen av fiolkroppen tillsammans så att han har möjlighet att se processen. Samtidigt har jag fördelen att ha ett extra par goda öron och en person som det går att diskutera skiftningar i fiolklangen med.

Innan injustering av kroppen är möjlig måste naturligtvis fiolen som sådan fungera. Den här artikeln beskriver hur fiolen ställs upp så att den är spelbar dock utan att göra bestående förändringar i fiolen. Slutresultatet av den här inledande justeringen är ungefär det slutresultat vanliga byggare får d.v.s. det här är vad resultatet råkade bli för just den här fiolen. För min process är det här startpunkten i en justeringsprocess som görs i små steg under några veckors tid.

IMGP2564

IMGP2554

Det första steget var att grovt yxa till ett stall med korrekt höjd och stränga fiolen så att det gick att se att stränghöjden var korrekt. Fötterna var ännu grovt tillskurna men det hindrar ju inte att man tar de första tonerna ur instrumentet. Mätningar av Dünnwaldparameterarna gav följande resultat:

File to process: 01_s2_initial.txt

Dunnwald parameters for :01_s2_initial.txt

A = 57.6187575814

B = 58.0013245333

C = 53.5653649062

D = 50.5725805287

E = 46.7906861788

F = 37.4920647702

L[Db] = -9.660404

ACD – B = -4.96729515679

DE – F = 10.681078587

Speciellt L-parametern är ganska usel. Fiolen har en mjuk något ”murrig” klang. Inte alls illa egentligen. Då fiolen provspelades av en folkmusikerbekant så gillades den skarpt … men stallet måste åtminstone justeras in så att det ser ut som ett stall. Stallet slipades in mot fiolen så att springorna under stallsfötterna försvann. Samtidigt sänkte jag stränghöjden en aning på E-sidan och tunnade av stallet på mitten. Resultatet av dessa förändringer blev:

File to process: 02_s2_stallet_inslipat.txt

Dunnwald parameters for :02_s2_stallet_inslipat.txt

A = 57.669968814

B = 57.57735385

C = 53.06503775

D = 50.2522291839

E = 47.6638228344

F = 39.8865612984

L[Db] = -3.291752

ACD – B = -4.80060196111

DE – F = 8.72344368901

Brilliansen minskade en aning (DE-F) medan framför allt L-parametern steg till ett område som börjar vara ok.

Spektret visar att området speciellt 3 … 4 kHz ligger rätt lågt vilket leder till att parametern DE-F också blir låg. Vad kan justeras?

Parametrarna L och ACD-B kan höjas genom att justera bottenplattan som nu inte ”ringer” korrekt. Knacktestning av bottenplattan ger ett dämpat ljud som snabbt klingar av. Jag lämnar dock dessa justeringar till torsdagen den 2.4 så att justeringarna kan göras tillsammans med Zoltan.

Värmebehandlar nu stallet utan andra modifikationer. Värmebehandling i (torr) kastrull så att temperaturen på kanske 5…10 minuter höjs till 130 grader C varefter stallet får svalna till remstemperatur. Den andra sidan av stallet behandlas på samma sätt.

File to process: 03_s2_stall_värmebehandlat.txt

Dunnwald parameters for :03_s2_stall_värmebehandlat.txt

A = 56.0291038605

B = 55.18143365

C = 52.0056394375

D = 48.6804344598

E = 45.523117702

F = 36.7762417016

L[Db] = -7.811827

ACD – B = -3.89359583519

DE – F = 9.90102120175

Vi ser att brilliansen ökade något (DE-F) och nasaliteten förbättrades marginellt. L-parametern försämrades men vi gör oss inget problem i detta skede eftersom vi sannolikt kan påverka L-parametern genom att flytta ljudpinnen. Jag satte in ljudpinnen rätt långt bakom stallet. Följande skede blir nu att stegvis flytta ljudpinnen framåt.

IMGP2539

Värmebehandlingen gick till så att jag lade stallet i en tom torr kastrull och värmde upp kastrullen på en elplatta till 130 grader C. Temperaturen kontrollerades med gjälp av en IR-termometer (Biltema). Då temperaturen nådde 130 grader stängdes plattan av och kastrullen/stallet fick svalna till rumstemperatur. Stallet svängdes sedan och den andra sidan behandlades på samma sätt.

Resultetet blev att stallet mörknade en aning. Om man inte följer med temperaturen är det lätt att bränna stallet vilket inte ser bra ut. Tänk på bakande av pepparkakor …

Vilken effekt har värmebehandlingen av stallet. Jag fällde stallet mot ett keramikfat och mätte ljudet från stallet före och efter värmebehandlingen. Resultatet blev:

s2_stall_obehandlat

Motsvarande spektrum efter värmebehandlingen har följande utseende:

s2_bridge_heat_treated_130degC

Notera hur de stora topparna blir jämnare och hur området 5 – 10 kHz stiger betydligt.

Observera!

Spektret är en kombination av ljudet från et keramikfat och stallet. Det är mycket svårt att dra några som helst slutsatser av spektren förutom att de höga frekvenserna verkar förstärkas vilket också är önskvärt.

Efter värmebehandlingen flyttades ljudpinnen i två steg. I det första steget flyttades ljudpinnen ungefär 0,5 mm i riktning mot stallet. Situationen före flyttningen framgör ur följande bild. Notera att f-hålets kanter med avsikt inte har färgats ännu eftersom den inre slipningen på grund av tung trafik in genom f-hålen sannolikt skulle ge vissa skador på lackskiktet vid kanten.

IMGP2550

Ljudpinnens startläge.

Spektret mättes innan ljudpinnen flyttades och Dünnwaldparametrarna beräknades ur spektret:

File to process: 04_s2_before_sound_post_movement.txt

Dunnwald parameters for :04_s2_before_sound_post_movement.txt

A = 54.5373453256

B = 53.34066135

C = 48.2681126562

D = 47.462948046

E = 42.6428494967

F = 34.945097375

L[Db] = -5.981938

ACD – B = -3.84089632531

DE – F = 9.45972091912

Stallet flyttades nu framåt mot stallet ungefär 0,5 mm och spektret mättes igen.

File to process: 05_s2_snd_post_0.5mm_towards_bridge.txt

Dunnwald parameters for :05_s2_snd_post_0.5mm_towards_bridge.txt

A = 57.7177763721

B = 58.3479794667

C = 52.1596876562

D = 49.8472987126

E = 47.4275626689

F = 38.7599602016

L[Db] = -4.008617

ACD – B = -5.9548351642

DE – F = 9.5521278278

Instrumentet fick nu vila i en timme varefter spektret mättes på nytt och motsvarande Dünnwaldparametrar beräknades:

File to process: 06_s2_before_second_snd_post_move.txt

Dunnwald parameters for :06_s2_before_second_snd_post_move.txt

A = 57.0221154884

B = 55.7270328

C = 50.574507375

D = 49.1470482529

E = 45.2956242649

F = 37.7892715202

L[Db] = -5.935711

ACD – B = -4.20772168889

DE – F = 8.91422621933

Ljudpinnen flyttades nu ca. 1 mm mot stallet med följande resultat:

File to process: 07_s2_snd_post_1mm_towards_bridge.txt

Dunnwald parameters for :07_s2_snd_post_1mm_towards_bridge.txt

A = 57.042697814

B = 55.2120464667

C = 50.7065035937

D = 48.6203173218

E = 45.0775141523

F = 37.4736369274

L[Db] = -2.546658

ACD – B = -3.94407283704

DE – F = 8.89893552636

Fiolen får nu vila ett par dagar innan den inre slipningen tar vid. Det kan vara kul att jämföra ovanstående inte ännu speciellt goda parametervärden med några kända Guarnerius/Stradivariusvioliner. Värdena är tagna ur Anders Buens artikel ”On Timbre Parameters and Sound Levels of Recorded Old Violins”. Artikeln finns på nätet. Googla på artikelns namn och Anders Buen.

Vi hittar följande:

Sockerfiolens L-parameter (bas) är -2.5 i detta skede vilket motsvarar Guarneri del Gesu 1742 ”Wieniawski” motsvarande parameter.

Sockerfiolens nasalitet ACD-B-parameter är -3.9 vilket är något sämre än Guarneri del Gesu 1735 ”Plowden” (-2.1).

Sockerfiolens brillians DE – F-parameter är 8,9 vilket motsvarar Guarneri del Gesu 1726 ”Stretton”. Värdet är tydligt bättre än motsvarande för ovannämnda ”Plowden” (7.0).

Notera att ovanstående endast är en intressant lek med siffror och ett sätt att kategorisera toppinstrument. Ljudmässigt ligger vi dock inte i det här skedet alls dåligt till.

Följande artikel kommer att behandla inre justering av sockerfiolen ovan. Målet är att i viss mån höja alla parametrarna (högre värde är bättre). Ett mål kunde vara att försöka få fiolen att mäta in på följande sätt:

L[Db] = -2

ACD – B = 1.7

DE – F = 12

Får vi fiolen justerad på detta sätt har vi ett instrument vars Dünnwaldparametrar motsvarar Antonius Stradivarius 1692 ”Oliveira”. Det blir intressant att se hur långt vi vågar gå. Notera att justeringen kommer att kräva ett antal veckor. Sannolikheten är mycket liten att man på ren tur hittar ett bra läge efter några timmars filande.

 

Dünnwaldparametrar som hjälp vid fioltrimning

19/03/2015

Uppdaterin 20150320: Det ser ut som om det har rätt stor betydelse hur skalan spelas. Min gissning är att det är skäl att spela skalan i halvtonssteg för att inte av misstag överbetona vissa resonanser och därigenom skapa en falsk fild av de ”verkliga” parametrarna. Det här kräver en del extra experimenterande. Jag återkommer senare med ytterligare kommentarer.

 

Anders Buen har skrivit en intressant artikel om tonfärgsparametrar och ljudnivå i inspelningar av gamla violiner. Det visar sig att tre parametrar är tillräckligt för att skilja klassiska fioler av Stradivarius- eller Guarneriustyp från majoriteten av nya violiner. Buens artikel bygger på forskning av H. Dünnwald.

Dünnwald jämförde inspelningar av 15 st erkänt goda Stradivariusvioliner och 15 erkänt goda Guarneriusfioler med moderna fioler och kom fram till att man med hjälp av tre parametrar, genom mätningar, i allmännhet kan lägga de gamla Cremonensiska fiolerna i en grupp och moderna instrument i en annan grupp.  Dünnwalds parametrar är extremt enkla att beräkna … något som gör dem mycket intressanta om man vill utnyttja dem som hjälpmedel då man stegvis optimerar en fiol.

Definition av Dünnwaldparametrarna

Sonoritetsparametern ”L” är ett mått på hur djup bas instrumentet har. Parametern definieras som:

L(dB) = Lmax(244-325Hz) – Lmax(649-1090Hz)

Man jämför i praktiken de högsta topparna inom de angivna frekvensintervallen. Notera att t.ex. G på den lösa G-strängen inte finns med eftersom denna resonans i allmänhet ligger långt nedanför t.ex. resonansen D (vid ca. 294 Hz). I moderna instrument ligger värdet på L-parametern ofta lågt kanske inom området -10 eller lägre. Resultatet kan vara en bas som känns ”torr” eller ”sträv”.

Nasalitetsparametern ACD-B i dB definieras som skillnaden mellan medelamplituderna inom intervallen:

ACD-B = Leq(190-650Hz och 1300-2580Hz) – Leq(650-1300Hz)

Brillians DE-F i dB definieras som (medelvärdet i de olika områdena):

DE-F = Leq(1640-4200Hz) – Leq(4200-6879Hz)

Paramerarna beskriver fioler på följande sätt:

L(dB)        Höga värden erhålls för goda och basrika fioler.

ACD-B     Höga värden för fioler som inte är ”nasala”

DE-F         Höga värden för fioler som är klara/brillianta. Låga värden ger instrument som låter sträva.

Dünnwald definierade följande frekvensområden som beskriver ”Cremonensiska” instrument och som kan användas till att gruppera Cremonensiska instrument i en gemensam grupp jämfört med de flesta ”moderna” instrument.

Områdena betecnas A, B, C, D, E och F och jag har av praktiska orsaker valt att numrera samma områden 1 … 6 på följande sätt:

1 = A betecknar området 244 – 325 Hz

2 = B betecknar området 649 – 1090 Hz

3 = C betecknar området 1300 – 1640 Hz

4 = D betecknar området  1640 – 2580 Hz

5 = E betecknar området 2590 – 4200 Hz

6 = F betecknar området 4300 – 7000 Hz

Hur används Dunnwaldparametrarna vid injustering

Arbetsgången är följande:

Spela in en skala t.ex i G-dur från låga G på G-strängen upp till H (B) på E-strängen. Spela alla toner kraftigt med ett bestämt tryck på stråken och använd kraftigt vibrato på de toner där det är möjligt. Jag använder en Zoom R8 inspelningsapparat och en högklassig kondensatormikrofon med stort membran (Rode NT1, den nyaste versionen).

  • Läs in inspelningen i Audacity. Klipp bort onödigt material från inspelningen d.v.s. störningar före/efter skalan.
  • Välj hela den inspelade skalan och normalisera amplituden (Effect/Normalize)
  • Kör ett spectrum på den inspelade skalan (Analyze/Plot Spectrum). Ställ in spectret Hanning Window, Log frekvens och fönsterstorlek 4096.
  • Exportera spektret som en textfil.
  • Kör ditt program som beräknar Dunnwalparametrarna och som skapar en fil för uppritning av parametrarna. I mitt fall Dunn_A.py .

Resultatet blir en serie grafer som i sig så småningom börjar ge användbar information samt Dunnwaldparametrarna för ifrågavarande modifikationssteg.

Inläsning i Audacity ger en amplitudkurva som visar skalan vi spelade i grafisk form:

Demo_Audacity_harding_fiddle

Hardangerfela, inspelat ljud efter 17 justeringssteg.

Notera att Dunnwalparametrarna har bestämts utgående från inspelad musik (från skiva). Detta betyder att toppviolinerna spelas med naturligt vibrato. Filen ovan är också spelad med vibrator för att göra den egna inspelningen mera kompatibel med Dunnwalds material.

Följande steg är att beräkna ett spektrum utgående från den kompletta inspelade skalan.

Screenshot - 19.03.2015 - 10.48.04

Spektrum genererat med Audacity från inspelningen ovan (Hardangerfiol).

Vi exporterar därefter filen som en textfil som består av de datapunkter ovanstående spektrum består av.

Frequency (Hz) Level (dB)
10,766602 -61,425014
21,533203 -57,003529
32,299805 -57,556839
43,066406 -59,613266
53,833008 -63,019962
64,599609 -67,556679
75,366211 -70,066673
86,132812 -70,658653
96,899414 -72,279839
107,666016 -75,024010
118,432617 -77,286835
129,199219 -78,456154

… e.t.c.

Textfilen behandlas därefter i programmet Dunn_A.py som är ett såkallat Python-script. Programmet använder definitionerna på Dünnwaldparametrarna ovan och beräknar ifrågavarande Dünnwaldparametrar för spektret ovan. All analys görs under Linux men det är självklart att samma sak kan göras också under Windows … men jag gillar inte Windows som utvecklingsomgivning!  Resultatet blir:

./Dunn_A.py 17_har_btn_uppe_esidan_balans.txt

File to process: 17_har_btn_uppe_esidan_balans.txt
Dunnwald parameters for :17_har_btn_uppe_esidan_balans.txt
A = 57.2790034651
B = 55.5393324333
C = 52.5985449688
D = 51.3234882299
E = 49.7805976623
F = 39.7953643065
L[Db] = -3.600813
ACD – B = -2.3831962358
DE – F = 10.5492311683

Vi ser att fiolen i slutskedet av slipprocessen har Dünnwaldparametrarna:

Sonolitet (L(dB)) = -3,6

Nasalitet               = – 2,3

Klarhet                 = 10,55

Jämförelse med toppfioler. Jämförelsen är tagen ur Anders Buens artikel ”On Timbre Parameters and Sound Levels of Recorded Old Violins”.

Allmänt kan det sägas att högre värden på Dünnwaldparametrarna är bättre. Likaså är antagligen ett högt värde på summan av parametrarna ett mått på instrumentets godhet.

Exempel #1

Jag har via min son Sebastian, som är yrkesviolinist, haft tillgång till en fransk Chanot toppfiol. Bara möjligheten att provspela det här instrumentet lärde mig att lyssna efter en klarhet/tonfärg som saknades i mina egna fioler innan de justerades.

./Dunn_A.py chanot_vibrato_dominant_20150318.txt

File to process: chanot_vibrato_dominant_20150318.txt
Dunnwald parameters for :chanot_vibrato_dominant_20150318.txt
A = 56.2209502326
B = 53.89373555
C = 46.5512793437
D = 49.6366710345
E = 50.0042672649
F = 39.7148046734
L[Db] = -8.702337
ACD – B = -3.11884555617
DE – F = 10.1550891796

Notera att Hardangerfiolen efter en serie justeringssteg ligger över Chanot toppfiolen för alla Dünnwaldparametrar. Fiolen har nu faktiskt ett mycket gott ljud! Notera också att värdena är angivna i decibel (dB). Man anser i allmänhet att skillnader större än 2 … 3 dB börjar vara hörbara.

Hur mäter Hardangerfiolen in jämfört med kända Stradivariusfioler och Guarneriusfioler?

Exempel #2

Guarneriusfiolen ”Wieniawski” mäter in på följande sätt:

L(dB)    = -2,3

ACD-B = 0,6

DE-F     = 13,6

Hardangerfiolen ligger mycket nära. Skillnaden är liten men den bör vara hörbar:

Sonolitet (L(dB)) = -3,6

Nasalitet               = – 2,3

Klarhet                 = 10,55

 

Exempel #3

Guarneri del Gesu från 1742 ”Sloan” mäter in så här:

L(dB)        =  -2,7

ACD – B   =   0,1

DE – F       =  13,2

Hardangerfiolen mäter in:

Sonolitet (L(dB)) = -3,6

Nasalitet               = – 2,3

Klarhet                 = 10,55

 

Exempel #3

Stradivarius ”Hellier” från 1679 mäter in så här:

L(dB)     =  -6,0

ACD-B  =  -1,2

DE-F      =  10,3

Hardangerfiolen mäter in:

Sonolitet (L(dB)) = -3,6

Nasalitet               = – 2,3

Klarhet                 = 10,55

 

 

Förändring i Dünnwaldparametrarna under injusteringen

En violin kan korrigeras om den mäter in dåligt. Det faktum att den mäter in dåligt kan alltid höras då man spelar på instrumentet. I början av justeringsprocessen var mätresultatet för Hardangerfiolen:

L[Db] = -14.525938
ACD – B = -2.91313386481
DE – F = 9.31585192488

Speciellt L-värdet är lågt och man hör tydligt en viss ”strävhet” då man spelar på instrumentet. Orsaken till den sträva tonen är att basens grundton saknas nästan helt och den första övertonen är svag.

Justeringen gjordes på följande sätt:

  • Knacktestade bottenplattan som saknade ”ring”. Slipade bottenplattan på insidan tvärs över vid övre och nedre ringnoderna. Det här förbättrar generellt basresponsen. Slipning av noden uppe vid halsen (bottenplattan) verkar också påverka brilliansen positivt. Noderna uppe/nere slipas så att knacktonen blir jämn tvärs över bottenplattan.
  • Kanalen mellan hals och basbjälke på locket slipades för att ge tonen aningen mera djup.
  • Kanalen i locket mellan basbjälke och bottenkloss slipades. Basen blir bättre men tonen ljusnar i viss mån.
  • Kontrollerade knacktonen mitt på bassidans f-hål som var lägre än det stora området i fibrernas riktning ungefär vid största bredden på locket. Höjde knacktonen området vid f-hålet genom slipning. Slipning av detta område tenderar att ge mera ”märg” år G- och D-strängarna. L-parametern tenderar att stiga eftersom toppen D vid ungefär 294 Hz tenderar att stiga.
  • Brilliansen ökas genom att slipa E-sidans f-håls inre kant ungefär vid mitten av f-hålet. Det kan löna sig att experimentera i små steg och slipa mitt på f-hålet både på insidan och utsidan.

Alla justeringar bör göras i små steg d.v.s. 50 – 100 slipdrag varefter ljudet mäts på nytt och Dünnwaldparametrarna beräknas. Parametrarna ger en mycket bekväm och lättläst återkoppling d.v.s. man ser genast om en modifikation för instrumentet i fel riktning. Om slipning på en specifik plats ger en försämring så försöker man naturligtvis på en annan plats och fortsätter inte slipa fram en ytterligare försämring.

Det är vart att notera att 100 slipdrag motsvarar ungefär en uttunning på 1/100 mm vilket med konventionella mätmetoder är omätbart men resultatet hörs tydligt. Den extrema känsligheten för tjockleksförändringar är enligt min uppfattning orsaken till att det inte finns en pålitlig metod att försöka kopiera fioler genom att mäta lock och botten och därefter kopiera orginalets dimensioner. Kopian kan inte bli exakt! Däremot är det självklart att en välgjord platta kan efterjusteras av en skicklig instrumentbyggare så att instrumentet efter justering blir bra.

Dunnwald_raw_data

Bilden visar hur de olika områdena A … F förändras vid justering. Ur de olika kurvorna kan Dünnwaldparametrarna enkelt beräknas om så önskas. Notera att ett specifikt spektralban kan förändras med över 10 dB till följd av justeringen.

 

 

Några länkar:

http://www.maestronet.com/forum/index.php?/user/25136-anders-buen/

Anders Buens artikel:

http://www.google.fi/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCQQFjAA&url=http%3A%2F%2Fwww.akutek.info%2FPapers%2FAB_Timbre_Parameters.pdf&ei=6K0KVaO1O5DxaOW-gNAE&usg=AFQjCNF4h1UWWcqbdVWNCUE0PxQR-twRsw&bvm=bv.88528373,d.d2s

What is old Italian Timbre:

http://www.google.fi/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CC8QFjAB&url=http%3A%2F%2Fwww.maestronet.com%2Fforum%2Findex.php%3Fapp%3Dcore%26module%3Dattach%26section%3Dattach%26attach_id%3D8999&ei=6K0KVaO1O5DxaOW-gNAE&usg=AFQjCNFRQRdfC_aWzlxSDx9SeLv9-JhFCA&bvm=bv.88528373,d.d2s

 

 

 

 

 

 

 

 

 

 

 

Alternativ färg för fiol

22/02/2015

Maestronet har man diskuterat olika tekniker för att lacka fioler. Det finns antagligen tusentals eller tiotusentals olika recept på lack både färgat och ofärgat. Personligen har jag köpt färdigt lack och jag har inte sett något behov av att börja koka lack själv. Genom de olika lackrecepten strävar man efter:

  • En vacker färg
  • Djup/lyster som framhäver träets struktur
  • En lackyta som håller i flera hundra år
  • Lack som inte förhindrar plattornas svängningar
  • Lack som inte är för tungt

Det finns många metoder för att ge instrumentets dess grundfärg. Den äldsta metoden var att hänga upp den trävita fiolen så att den utsattes för ljus varvid ytskiktet kommer att oxideras vilket gör att fiolen gulnar. Modernare metuder är att man hänger upp fiolen i ett UV-skåp, resultatet blir detsamma som för solbehandling men processen är snabbare … och processen lämpar sig bättre för vårt nordiska klimat.

Andra alternativ är att man tätar träytan med något lämpligt material. Många olika material används såsom gelatin, benlim, kasein etc. Tanken är att man ”tätar” porerna i träytan innan man lägger på färg eller lack. Färgämnet, bränt socker, i den här episteln både färgar och tätar ytan.

IMGP1289

Sockergrund på fiol. Ena halvan (den nedre halvan som är matt) av instrumentet har endast ett sockerlager. Den övre halvan har ett lager lack ovanpå sockerlagret.

Så här ser instrumentet ut som nästan färdigt:

IMGP1528

Sockerfiolen börjar vara färdig att provspela.

Hur tillverkar man sockertätningsmedlet/färgämnet

Häll upp mellan en halv och en deciliter mörk sirap i en liten kastrull. Sirapen kan inte användas obehandlad även om färgen kunde vara lämplig eftersom den obehandlade sirapen inte torkar! Genom att hetta upp sirapen kommer den att delvis förkolna vilket ger en djupare rödbrun färg och samtidigt polymeriseras sockret så att längre sockerkedjor bildas vilket gör att materialet torkar utan att vara klibbigt.

Det har visat sig att det är praktiskt att följa med processen med hjälp av en infrarödtermometer som mäter det smälta sockrets temperatur utan kontakt. Biltema säljer en lämplig IR-termometer för några tior (Euro).

IMGP1897_PEF_embedded

Kokprocessens första skede. Vatten avgår men färgen ändrar inte.

IMGP1898_PEF_embedded

Temperaturen ligger nu på ca. 130 grader C. Färgen börjar tydligt mörkna.

IMGP1899_PEF_embedded

Temperaturen ligger nu på ungefär 150 grader.

IMGP1900_PEF_embedded

Temperaturen är nu mellan 170 och 180 grader C. Längre än detta gick jag inte vid detta kok.

 

Uppvärmningen sker på elspis där plattan kan regleras i sex steg. Jag har kört på halv effekt. Då uppvärmningen startar börjar sirapen bubbla då vattnet avgår som ånga. Då vattnet har kokat bort börjar sirapens temperatur stiga från något över 100 grader upp till ca. 130 grader. Temperaturen kommer att ligga rätt länge på denna nivå medan färgen långsamt mörknar. Efter en stund börjar temperaturen stiga ytterligare. Jag slutade koket då temperaturen gick upp till 175 – 180 grader. Min gissning är att färgen skulle ha blivit bättre om jag hade fortsatt kokningen till ca. 200 grader. Färgen skulle ha blivit brunare och mörkare än den nu relativt gulbruna färgen.

Då sockret har fått den färg jag vill ha lägger jag försiktigt till vatten. Observera att det gäller att vara extremt försiktig eftersom det finns risk för stänk av tvåhundragradigt socker om man lägger till alltför mycket vatten på en gång. Vatten måste läggas till medan sockerfärgen är het eftersom materialet annars då det svalnar blir stenhårt och det krävs mycket tid att lösa upp materialet efter att det stelnat. Resultatet blir sockerfärg som i vattenlösning ser nästan svart ut. Då färgen dras på fiolen blir den guldbrun.

Sockerfiolen nummer två fick nu ett lager sockerfärg. På sockergrunden läggs därefter ett lager klarlack. Efter detta arbetsskede måste resultatet utvärderas. Om det behövs kan jag lägga på lite bärnstensfärgat lack och därefter mera klarlack beroende av vilken slutlig kulör jag vill ha.

Artikeln kommer att uppdateras med bilder på det nya instrumentet.

 

 

 

Experiment med konvertering av musik till noter

18/02/2015

Bakgrund

Min äldre bror stötte nyligen på ett nytt intressant programspråk ”Julia” som har influerats av Python, Matlab och många andra programmeringsspråk. Julia har en relativt intuitiv syntax vilket betyder att det är rätt enkelt att lära sig språket då man har använt andra programmeringsspråk. Julia påminner om språket Python men Julia kan vara tiotals gånger snabbare … nästan lika snabbt som kompilerad c-kod trots att Julia är ett tolkat språk med alla de fördelar detta medför (bl.a. enkelt att skriva program stegvis och tista medan man skriver).

Problemet att ur spelad musik har intresserat mig länge men jag har inte kommit mig för att skriva verktyg. Julia råkade nu bli den faktor som gjorde att jag började experimentera med notgenerering för att samtidigt lära mig språket Julia.

Det här kommer antagligen att bli en serie artiklar där olika aspekter av problemet behandlas … och det finns inga garantier för att slutresultatet på riktigt blir användbart.

Existerande hjälpmedel

Tanken är inte att skriva allt som behövs själv utan existerande programkod kommer att användas. Följande program används för närvarande.

  • Programmet Audacity används för inspelning. I samband med inspelningen normaliseras ljudfilen till standardamplitud eftersom detta förenklar analysen.
  • Julia används för programmeringen och Julia innehåller de FFT (fast fourier transform) rutiner som behövs för att plocka ut toner ur ljudmassan.
  • Programmet LilyPond används för att generera noter

Konvertering av ljudfilen till musikaliska toner

Det första programmet extract_notes.jl läser block om 8152 ljudsampel från ljudfilen som är samplad i CD-kvalité d.v.s. 44100 Hz. Ett datablock motsvarar då ungefär 200 ms ljud och den teoretiska upplösningen i spektret som skapas med FFT är ungefär 5 Hz.

Tanken är att analysera hela filen i 200 ms block. blocken/tonerna kan senare kombineras till något som motsvarar verkliga noter men detta är något för framtiden. Det är självklart att inte endast en ton utan en hel serie toner kommer att hittas i varje tonblock eftersom en fiolton innehåller en lång serie övertoner. Hur jag väljer att utnyttja övertonsserierna är också ett problem som lämnas för framtida optimering.

Programmet extract_notes.jl skapar en textfil som innehåller de noter programmet hittade samt amplituden för de olika tonerna (tonstyrkan). Textfilen ser för närvarande inte vacker ut:

Length:605696
Längd i sekunder:13.734603174603174
N ASCIIString[”d'”,”a””,”a”'”,”c”””,”d”””,”?”,”?”,”?”,”?”,”?”,”?”, … ,”?”,”?”,”?”,”?”,”?”]
A [-31.890321498989003,-30.634769023040928,-32.27245706229339,-30.018825559930626,-29.475444684452142,-9999.0,-9999.0, … , -9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0]
N ASCIIString[”d'”,”d””,”a””,”c”””,”d”””,”?”,”?”,”?”,”?”,”?”,”?”,”?”,”?”,”?”, … , ”?”,”?”,”?”,”?”,”?”,”?”]

o.s.v.

En rad som börjar med ”N” innehåller detekterade noter t.ex. ” d’ ”  , ” a” ” . ”?” betyder att ingen not har hittas för denna position i tabellen.

En rad som börjar med ”A” innehåller amplituder. En amplitud med värdet -9999.0 betyder att ingen amplitud finns för denna not.

Notnotationen är den som används i LilyPond.

Generering av noter

För att generera noter behöver vi nu endast plocka ut notvärdena ur tabellen och skriva ut noterna (de harmoniska övertonerna) som ett ackord i LilyPond.

Ett ackord i LilyPond betecknas med:

< not0 not1 not2 … >

Då vi plockar ut noterna får vi:

<   d’    a”   a”’  c””  d”” >

Vi kan titta på noterna genom att helt enkelt lägga till LilyPond startkod och slutkod så att man får en LilyPondfil som kan kompileras. Jag har skrivit ett separat litet program som läser textfilen ovan och konverterar den till kompilerbar LilyPond-kod. Programmet heter process_notes.jl .

Startkoden är:

\version  ”2.16.2”
{

Slutkoden är:

}

Resultatet för melodin ”Gubben noak” blev:

\version  ”2.16.2”
{< d’  a”  a”’  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  fis”’  a”’ >
< d’  dis’  d”  a”  fis”’ >
< d’  d”  a”  a”’  c”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  fis”’  a”’ >
< cis’  d’  d”  a”  c”” >
< d’  d”  a”  fis”’  c”” >
< d’  d”  a”  a”’  c”” >
< d’  d”  a”  fis”’  a”’ >
< d’  dis’  d”  a”  a”’ >
< d’  dis’  d”  a”  a”’ >
< fis’  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< e’  g”’ >
< e’  e”  b”  g”’  gis”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< dis’  e’  e”  b”  g”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  e”’  gis”’ >
< dis’  e’  e”  b”  gis”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< g’  d”’  g”’  b”’  d”” >
< g’  d”’  g”’  b”’  d”” >
< g’  d”’  g”’  b”’  d”” >
< g’  d”’  g”’  b”’  d”” >
< fis’  g’  cis”’ >
< fis’  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  cis”’  fis”’  ais”’  cis”” >
< fis’  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  cis”’  cis”” >
< e’  e”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  gis”’  b”’ >
< e’  e”  gis”’  b”’  cis”” >
< e’  e”  gis”’  b”’  cis”” >
< e’  e”  gis”’  b”’  cis”” >
< e’  e”  gis”’  b”’  cis”” >
< cis’  d’ >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  a” >

Den här filen kan nu LilyPond processa:

lilypond mellanresultat.ly

Resultatet blir en pdf-fil som heter mellanresultat.pdf .

ofiltrerad

Rå notutskrift då programmen har analyserat början av ”Gubben Noak”.

Mängden av toner är en följd av att en fiolton är mycket övertonsrik och spektret således inte innehåller endast en ton utan en mycket lång rad harmoniska och icke harmoniska övertoner.

Då man betraktar bilden så ser man en hel del dubletter som ligger på ett halvt tonstegs avstånd från varandra. Detta betyder inte att tonen är skärande dissonant utan på att ifrågavarande ton är relativt kraftig och spektraltoppen relativt bred. Resultatet är att analysprogrammet kommer att få flera träffar vid en ton. Frågan blir då hur man bäst filtrerar bort de oönskade tonerna?

Svaret på frågan får vila till nästa artikel 🙂 .

Justering av en kinesisk altiol (Yita Music)

18/01/2015

Jag köpte en altfiol från Yita Musik i Kina för några år sedan. Priset låg då på kanske 250 dollar. Fiolen har spelats av olika musiker, också proffs, och kommentarerna har allmänt taget varit rätt positiva. Instrumentet är välbyggt och ljudet är rätt skapligt men absolut inte perfekt. Jag fick nyligen tillbaka instrumentet och beslöt att titta på det igen och naturligtvis göra vissa justeringar. Jag vet att följande detaljer aldrig har justerats:

  • Bottenplattan har aldrig stämts genom inre slipning
  • Locket har aldrig stämts via inre slipning
  • Stallet har aldrig värmebehandlats
  • Stallet verkar rätt tjockt upptill baserat på mina nuvarande erfarenheter

Jag beslöt att justera bottenplattan och stallet men locket skulle inte röras denna gång.

IMGP1470

Altfiolen framifrån

IMGP1473

Altfiolen bakifrån

Om mätningarna

Alla mätningar har gjorts så att jag spelar en skala upp från låga C till D på A-strängen och därifrån ner igen till C. Vid inspelningen har jag använt en Logitech USB mikrofon som på intet sätt är perfekt men den fungerar inom det frekvensområde, 200 Hz – 6 kHz, som intresserar mig.

Fördelen med att spela en långsam skala jämfört med att göra ett knacktest på stallet är att man tydligare ser en specifik tons övertoner och framför allt amplitudförhållandet mellan övertonerna. De harmoniska övertonerna ger instrumentet dess klang.

C-strängen tonen F

Utgångsläget innan några som helst justeringar har gjorts visas i fig. 1.

Utgläge_F_C-str

Fig. 1 Tonen F på C-strängen spelad innan någon korrigering gjorts.

Notera hur övertonen F7 (den mittersta och högsta toppen i gropen mellan 2-3 kHz) ligger 33 dB under oktaven F4 mellan 300-400 Hz. Grundtonen F3 ligger itrakten av 180 Hz och den är svag.

Jag knackade runt på ringmoden på bottenplattan med altfiolen stämd och spelbar. Resultatet var att tvärnoden nere under stränghållaren hade en låh knackton jämfört med mitten av locket och tvärnoden uppe nära halsen (som även den var något låg).

Jag gjorde en första grovjustering genom att slipa tvärnoden nere 300 drag, uppe vid noden vid halsen 100 drag och noden vid C-bågarna 100 drav var. Provspelning efter slipningen gav en ”menlös” rätt tråkig ton utan sting. Situationen ordnade sig dock av sig själv antagligen till följd av att de slipade platserna svalnade och eventuellt ytlagret hårdnade. Efter 15 minuter kunde man tydligt höra en förbättring jämfört med utgångsläget.

Mätningar visade att området 3-5 kHz hade stigit med ca. 3 dB jämfört med grundregistret 200 – 1000 Hz.

Slipade ytterligare +100 drag efter några timmars paus.

Slipade noden vid C-bågarna i bottenplattan. Det här gav en försämring så att tonen blev torrare och strävare. Man skall helt tydligt vara försiktig med att röra området i trakten av C-bågarna. Dessa områden lämnas ofta relativt tjocka av byggare.

Balanserade f-hålens vingar ett första varv. Jag slipar vingen från insidan så att man får en jämnt sjunkande ton då man knackar från vingspetsen ner mot fiolens nedre del eller upp mot halsen. Min uppfattning är att en mjuk knacktonsövergång låter vingen koppla till ett större frekvensintervall utan att endast vissa toner förstärks.

Frovspelning visade att tonen på C- och G-strängarna fortfarande var något torr/sträv men utan den varma hartzighet jag vill ha. Lösningen är att slipa tvärs över nere vilket tar bort torrheten och ger lite mera värme och skärpa i tonen. Slipade 100 drag nere. Ett problem vid slipningen under stränghållaren är att den här fiolen har två frimärken som förstärker mittlimfogen. Eftersom frimärket låg mitt på den nod jag ville slipa slipade jag en lång ellips runt förstärkningsfrimärket. Resultatet var det förväntade och tonen blev bättre.

Jag tog nu loss stallet och tunnade av det något upptill. Resultatet är att vi flyttar stallets huvudresonans högre upp i frekvens vilket förstärker området 2-4 kHz som ger brillians åt tonen. Jag värmebehandlade stallet i en aluminiumkastrull så att jag lade stallet i kastrullen (torr!) och värmde den på full effekt på elspisen. Då temperaturen nådde 130 grader C flyttade jag bort kastrullen från plattan och lät stallet långsamt svalna i kastrullen. Sidan upp mot halsen värmdes mycket försiktigt endast så att stallet inte skulle slå sig. Temperaturgränsen 130 grader var antasgligen onödigt hög. Nästa gång värmer jag till 120 grader C eftersom dagens uppvärmning gav synliga färgförändringar.

Efter_värmebehandling

Fig. 2 Situationen efter värmebehandling av stallet.

Notera hur området 2-3 kHz har vuxit kraftigt, detta område ger ”must”, ”klang” åt den spelade grundtonen.

G- och D-strängarna kändes något svaga jämfört med C- och A-strängarna. Detta åtgärdades genom att försiktigt med stallet på plats vidga hålen i stallets hjärta. Hålet under D-strängen påverkar mera klangen i G-strängen och hålet under G-strängen påverkar klangen i D-strängen. Justeringen gav det förväntade resultatet.

Jag slipade ytterligare +100 drag i noden nere för att ge bättre klang i C- och G-strängarna.

Jag jämnade ut A-sidans inre vinge som lät låg nära stallet. En lätt slipning om 40 drag med liten magnet fixade detta.

Slutresultat:

Slutres_a-vinge

Fig. 3 Slutresultat för denna omgång.

Notera hur området 2-3 kH har stigit kraftigt jämfört med utgångspunkten.

 

 

 

 


Pointman's

A lagrange point in life

THE HOCKEY SCHTICK

Lars Silén: Reflex och Spegling

NoTricksZone

Lars Silén: Reflex och Spegling

Big Picture News, Informed Analysis

Canadian journalist Donna Laframboise has been watching the climate world since 2009. What she sees isn't pretty.

JoNova

Lars Silén: Reflex och Spegling

Climate Audit

by Steve McIntyre

Musings from the Chiefio

Techno bits and mind pleasers

Bishop Hill

Lars Silén: Reflex och Spegling

Watts Up With That?

The world's most viewed site on global warming and climate change

TED Blog

The TED Blog shares interesting news about TED, TED Talks video, the TED Prize and more.

Larsil2009's Blog

Lars Silén: Reflex och Spegling

%d bloggare gillar detta: